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SUMMARY

A two-step hybrid analysis technique is presented for predicting the nonlinear
steady-state temperature distribution in structures and solids. The technique is
based on the successive application of the regular perturbation expansion and the
classical Bubnov-Galerkin approximation. The functions associated with the various-
order terms in the perturbation expansion of the temperature are first obtained by
using the regular perturbation method. These functions are selected as coordinate
functions (or temperature modes) and the classical Bubnov-Galerkin technique is then
used to compute their amplitudes.

The potential of the proposed hybrid technique for the solution of nonlinear
thermal problems is discussed. The effectiveness of this technique is demonstrated
by means of three numerical examples, which include the effects of conduction, con-
vection, and radiation modes of heat transfer.

Results of the study indicate that the hybrid technique overcomes two major
drawbacks of the classical techniques: (1) the requirement of using a small parame-
ter in the regular perturbation method and (2) the arbitrariness in the choice of the
coordinate functions in the Bubnov-Galerkin technique. Therefore, the proposed tech-
nique extends the range of applicability of the regular perturbation method and
enhances the effectiveness of the Bubnov-Galerkin technique.

INTRODUCTION

In recent years, increasing attention has been devoted to the application of
approximate analytical technigues to nonlinear heat-transfer problems. Analytical
techniques have the major advantage over numerical discretization techniques of pro-
viding physical insight into the nature of the solution of the problem. Moreover,
analytical techniques can be used in conjunction with a partitioning scheme for the
thermal analysis of individual components of practical (complex) structures. Two of
the commonly used approximate analytical techniques are the regular perturbation
method and the Bubnov-Galerkin technique. Review of the many applications of these
techniques to thermal problems is given in a survey paper (ref. 1) and a monograph
(ref. 2).

The regular perturbation method consists of the development of the solution in
terms of unknown functions with preassigned coefficients. The unknown functions are
obtained by solving a recursive set of differential eguations which are, in general,
simpler than the original governing differential equation of the problem. By con-
trast, in the Bubnov-Galerkin technique, the temperature is sought in the form of a
series of a priori chosen coordinate functions (or temperature modes) with unknown
coefficients.

Despite their usefulness in solving nonlinear thermal problems, the aforemen-
tioned two techniques have a number of drawbacks. Regular perturbation technigues
have two major drawbacks. The first stems from the fact that as the number of terms
in the perturbation series increases, the mathematical complexity of the differential
equations builds up rapidly. Therefore, for practical applications, the perturbation
series has to be restricted to a few terms., The second drawback is the requirement



of restricting the perturbation parameter to small values in order to obtain solu-
tions of acceptable accuracy. The main shortcoming of the Bubnov-Galerkin technique,
from a practical point of view, is the difficulty of selecting good coordinate func-

tions (or modes).

The aforementioned drawbacks of the regular perturbation technique have been
recognized and a number of remedial actions were proposed. These included the use of
a small number of terms (e.g., two or three) in the perturbation expansion and either
(1) generating "mimic functions" which give accurate numerical estimates of the solu-
tion over the entire physical domain {(ref. 3), or (2) applying a nonlinear transfor-
mation (e.g., Shanks transformation, ref., 4) to estimate the solution as the number
of terms goes to infinity. However, as shown in reference 5, the success of these
methods cannot be guaranteed in general, and the remedial actions may fail to produce
satisfactory results.

The successful experience obtained with the hybrid numerical procedure which
combines the finite-—-element method with the Galerkin technique in reference 6 raises
the question as to whether the use of a hybrid technique which combines both the
standard regular perturbation method and the classical Bubnov-Galerkin technique
might overcome the major drawbacks of the two techniques and provide a more effective
approximate analysis procedure. The present study focuses on this question. Specif-
ically, the objectives of this paper are (1) to present a hybrid perturbation/Bubnov-
Galerkin technique for nonlinear thermal analysis and (2) to demonstrate the effec-
tiveness of the proposed technigque by means of numerical examples, The technique is
described as a formal procedure without any attempt to justify it rigorously. How-
ever, the numerical results presented herein are intended to give the analysts some
insight into the potential of the proposed technique and to stimulate research and
development of the mathematical foundations necessary to realize this potential,

To sharpen the focus of the study, discussion is limited to nonlinear steady-
state thermal analysis with continuous temperature fields in the space domain. Non-
linear conduction, convection, and radiation modes of heat transfer are considered.
The hybrid technique presented herein is also expected to be particularly useful for
nonlinear transient thermal problems.

SYMBOLS
A cross-sectional area of fin
B boundary differential operator (see eq. (2))
c circumference of fin cross section
C,C1,C2,C3 constants defined in appendix
e error norm defined in equation (17)
h convective heat-transfer coefficient
k thermal conductivity coefficient
ha,ho thermal conductivity coefficients at T = T, and T =0
L fin length (also, side length of plate)



differential operators defined in equations (1), (3), and (4)

differential operators defined in equations (5), (6), (9), (10), (11),
and (12)

number of points at which numerical values of temperature are evaluated
total number of coordinate functions

range of indices (see eq. (8))

perturbation parameters

functions defined in equations (10) and (12)

temperature

coordinate functions (temperature modes) defined in equations (7)
and (8)

amplitude of sinusoidal temperature variation (see fig. 1)
Cartesian coordinates

parameters (see table I)

boundary of structure (or solid)

nonlinear conductivity coefficients (see table I)

constant (see table TI)

emissivity of fin surface

nondimensional temperature (see table I)

first eigenfunction for zeroth-order perturbation equation
dimensionless coordinate functions defined in appendix
radiation-conduction parameter (see table TI)

dimensionless coordinates {(see table 1I)

=1 - &

Stefan-Boltzmann constant

amplitude of eigenfunction

undetermined coefficients (amplitudes of coordinate functioné)

domain of structure (or solid)



Subscripts:

a ambient
b fin base
s effective sink

BASIC IDEA OF HYBRID TECHNIQUE
Governing Equations
The steady~state thermal response of a structure or solid can be described by

the following differential equation and boundary conditions:

L) in @ (1)
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and

on T (2)
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where T is the temperature, ¥ and B are differential operators, § is the
+domain of the structure or solid, and T' is its boundary. The differential operator
¢ includes nonlinear conduction, convection, and radiation terms.

The application of the hybrid perturbation/Bubnov-Galerkin technique to the
solution of equations (1) and (2) can be conveniently divided into the following two
distinct steps: (1) generation of coordinate functions (or temperature modes) using
the standard regular perturbation method and (2) computation of the amplitudes of the
coordinate functions via the Bubnov-Galerkin technique. The procedure is described

in detail subsequently.
Generation of Coordinate Functions
For the purpose of generating the required coordinate functions (or temperature

modes), the governing differential equation (eq. (1)) is embedded in a single- or
multiple~parameter family of equations of the form:

g(r,q) =0 (3)
for the single-parameter case and

gB(T,q1,q2) =0 (4)



for the two-parameter case, where q, dqr and q, are normalizing or perturbation

parameters. Extension to more than two parameters is straightforward and is not
discussed herein.

For nonlinear thermal problems,_it is convenient to choose the perturbation
parameters such that the operators & and & can be decomposed as follows:

9T, q) =2 (1) +§€1<T,q) (5)

and

~

Si’(fr,q1,q2> =< (T +d (g, ) (6?

where &% and 8%0 are finean differential operators which are independent of

4, 4y, and dy; &q and 8% are pnonlinear operators in T and its spatial
derivatives.

The temperature T is represented by the regular perturbation expansion:
n-1 i
T=Zq T, (7)
. i
1=0
for the single parameter case, and

(8)

for the two-parameter case, where Ty and Tj,y are perturbation functions which
represent temperature modes; and n is the total number of terms in the expansion.
For the two-parameter case n = %&n + 1)(n1 + 2). The differential equations used
in generating Ty (or Ti,') are obtained by substituting the temperature expansion
(eq. (7) or eg. (8)), into™ the governing differential equation (eq. (3) or eq. (4))
and setting the coefficients of g' (or qlql) successively equal to zero. This
leads to the following recursive set of equations (for a detailed description of the
reqular perturbation technique, see any of the monographs on the subject, e.g.,
refs, 7 and 8):

SL(TO) (9)
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for the single-parameter case, and

D = 11)
geoo(To,o) 0

(l - . . . .
iij('ri'j) R‘ij (i >0 3>0 or i>0, 3 »0) (12)
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for the two-parameter case where Sfo, Efoo,

39:'.', and S‘Z]'._j are Linear differential
operators; R. depends on Tor with £ < j; and R,. depends on T with

. 1] 2,k
L <i, k<j or L<i, k £ j.

Note that whereas the original differential equation (eq. (3) or eq. (4)) is
nonlinear, the recursive set of equations (egs. (9) and (10) or egs. (11) and (12))

is all Lineanr.

For prescribed nonzero values for the boundary temperatures or their spatial
derivatives, the zeroth-order perturbation function T (or To O) is used to sat-
isfy these nonhomogeneous boundary conditions. All the higher-ofder perturbation
functions, solutions of equation (10) (or eg. (12)), satisfy only homogeneous
boundary conditions,

Computation of Amplitudes of Coordinate Functions

The perturbation functions Ty (or Ti,j) are now chosen as coordinate func-

tions and the temperature is expressed as a linear combination of these functions as
follows:

n-1
i=0
for the single-parameter case, and

1’1_l J
T =2 _Z bg,5-1 Ti,4-1 (14)
3j=0 i=0

for the two-parameter case where ¢; and ¢; j are unknown parameters which repre-
I

sent amplitudes of the coordinate functions (or temperature modes) T; and T, 3

and n equals the total number of modes. In the two-parameter case, !

(n, + 1)(n1 + 2)

The parameters ¢y (or ¢i,') are obtained by applying the Bubnov-Galerkin
technique to the governing differential equation (eqg. (3) or eq. (4)). The resulting
set of n nonlinear equations can be cast in the following form:

2 /n-1
fge,(Z ¢iTi,q>Tj dQ =0 (15)

0 i=0



or
n .

1 J
P iz—:o b3, 5-4T, 52079 79y) Ty j 4R = 0 (16)
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Note that for prescribed nonzero boundary conditions, the parameter bg (or dg o)
. . s . 14
is used to satisfy these boundary conditions; therefore, the number of free parame-
ters reduces to n-1,

Comments on Selection of Coordinate Functions
The chosen set of coordinate functions has the following two properties:

1. They are linearly independent and span the space of solutions in the neigh-
borhood of the point of their generation., Therefore, they fully character-
ize the nonlinear solution in that neighborhocod.

2. Their generation, using the regular perturbation technique, requires the
solution of a recursive set of fineat differential equations.

The first property is necessary for the convergence of the Bubnov-Galerkin
approximation., The second property enhances the effectiveness of the proposed hybrid
technique for solving nonlinear thermal problems.

The mathematical complexity of the governing differential equations used in
generating the coordinate functions builds up rapidly with the increase in the number
of these functions. Therefore, it is convenient to generate only a few coordinate
functions and augment them, for example, by the first eigenfunction of the zeroth-
order perturbation equation. The performance of the augmented set of coordinate
functions will be discussed in the next section.

NUMERICAL STUDIES

To evaluate the effectiveness of the proposed hybrid analysis technique, three
nonlinear steady-state thermal problems were soclved. For each problem, the solutions
obtained by the hybrid technique were compared with exact solutions (whenever avail-
able), the regular perturbation expansions, and other numerical approximations.
Herein the results of three typical steady-state thermal problems are discussed. The
three problems are (1) two-dimensional conduction in a square plate, (2) a one-
dimensional conducting-convecting fin with variable heat-transfer coefficient, and
(3) a one~dimensional conducting-convecting-radiating fin. In the first and third
problems, the thermal conductivity is assumed to be temperature dependent. The three
problems were analyzed by using the reqular perturbation technique in reference 9. A
summary of the differential equations and boundary conditions for the three problems
is given in table I.

To assess the accuracy of the solutions obtained by the different techniques for
each of the three problems, the temperature is evaluated at a large number of points



in the solution domain. Then a vector of temperature errors {AT} is computed as
follows:

{ar} = {'r}e - {1}

approx

where {T}e and {T}approx are the vectors of exact and approximate temperatures,
respectively.

A weighted Euclidean norm of {AT} is used as a global error measure, namely

{ar)® {ar)
(T} {r}

(17)

8=

where superscript t denotes transposition, and m is the number of points at which
the numerical values of the temperature are evaluated. For the three problems ana-
lyzed, m was chosen to be 49, 30, and 30, respectively.

Two-Dimensional Conduction in Square Plate

The first problem considered is that of steady-state thermal conduction in a
thin square plate with prescribed boundary temperatures. (See fig, 1.) The thermal
conductivity is assumed to vary linearly with temperature. An exact analytic solu-
tion based on the Kirchhoff transformation and a perturbation solution were presented
in reference 9. As in reference 9, the perturbation parameter g was chosen in the
present study to be the nonlinear conductivity coefficient vy. (See table I.)

Two sets of coordinate functions are considered in the hybrid technique. The
first set uses the two terms of the perturbation expansion given in reference 9, 1In
the second set, the two coordinate functions of the first set are augmented by the
lowest eigenmode of the zeroth-order perturbation equation. The explicit forms of
the coordinate functions are listed in the appendix. Since one coordinate function
(zeroth-order perturbation solution) is used in satisfying the nonzero prescribed
boundary condition, the first set of coordinate functions allows the use of a single
free parameter and the second set has two free parameters, The numerical values of
the amplitudes of the coordinate functions in the hybrid technique are given in
table II for the two cases g =1 and q = 3., Note that the amplitudes of the first
two-coordinate functions in the regular perturbation technique are equal to 1 and q,
respectively.

An indication of the accuracy of the solutions obtained with the hybrid tech-
nigue and the perturbation method is given in figure 1. The error norm for four
different values of the nonlinear conductivity coefficient (perturbation parameter),
namely, gq = 0.5, 1.0, 3.0, and 5.0, is shown in figure 2, An examination of fig-
ures 1 and 2 reveals the following:

1. BAs expected, the accuracy of the perturbation solutions deteriorates rapidly
with the increase in the perturbation parameter q (fig. 2), particularly for
g > 1.0, For q = 3.0, the perturbation solution was considerably in error
(fig. 1), and for q = 5.0, the error norm for the perturbation expansion could not
be shown in fiqure 2.



2. The solutions obtained by using the hybrid technigque with two-coordinate
functions (one free parameter) were reasonably accurate for g < 3.0. For g > 3.0,
the hybrid technique predicts qualitatively the correct temperature distribution.

3. The accuracy of the solutions obtained by the hybrid technique was considera-
bly improved when the two-coordinate functions were augmented by the eigenmode. This
is particularly true for g » 3.0. (See figs. 1 and 2.)

One-Dimensional Conducting-Convecting Fin With
Variable Heat-Transfer Coefficient

The second problem is a straight conducting-convecting fin of length L, cross-
sectional area A, and perimeter ¢, exposed on both sides to a free convective envi-
ronment of temperature Ta. (See fig., 3.) The boundary conditions are a constant
base temperature and an adiabatic tip. The thermal conductivity k is assumed to be
independent of the temperature., The convective heat-transfer coefficient is taken to
be of the form:

B

= 18

h = h 6 (18)
T—Ta

where 6 = T - T is a normalized temperature defined in terms of the ambient tem-
b a

perature Ta and the fin base temperature Typi B is a small parameter
(B = 0.25 and 0.33 for laminar and turbulent conditions, respectively (ref. 9));
and hy = T, - Ta)B, where ¥ 1is a constant.

Two different choices were made for the perturbation parameter g. The first

choice is the same as that of reference 9, namely q = B. The second choice is
2
_ x? B hbcL
4= ~ kA

where A? is a convection-conduction fin parameter (table I)., The latter choice
resulted in significantly simplified expressions of the coordinate functions., For
case 1, g = B, two-coordinate functions were used, and for case 2, g = KZ, four-
coordinate functions were generated. This corresponds to a single free parameter in
case 1 and three free parameters in case 2. The expressions of the coordinate func-
tions for the two cases are given in the appendix.

An indication of the accuracy of the solutions obtained by the hybrid technique
and the reqular perturbation method are given in figure 3 for A\ = 1.0 and 2.0 and
B =0.33 and 1.0. The latter value of B has no physical significance and was
selected in order to amplify the effect of the magnitude of the perturbation parame-
ter on the quality of the solutions. The standard for comparison was taken to be the
finite-element solution obtained by using a uniform grid of 15 three-noded finite
elements with quadratic Lagrangian interpolation functions for the temperature. As
can be seen from figure 3, the accuracy of the perturbation solution is very sensi-
tive to both the choice and the magnitude of the perturbation parameter. For
g = B, the two-term perturbation expansion is accurate for f = < 0.33 but becomes

9



quite inaccurate for B = 1.0. On the other hand, for gq = xz, the four-term
perturbation expansion is grossly in error for all X > 1.0. The perturbation
solutions for A = 2 could not be shown in figure 3. By contrast, the accuracy of
the solutions obtained by the hybrid technique were found to be insensitive to the
choice of the perturbation parameter. The solutions obtained by using q = B

and g = A2 were equally accurate and were almost indistinguishable from the finite-
element solutions,

One-Dimensional Conducting-Convecting-Radiating Fin

The last problem considered is that of one-dimensional conduction in a straight
fin of length L, cross-sectional area A, and perimeter c¢. Heat transfer from the
surface of the fin involves both convection and radiation. The thermal conductivity
is assumed to vary linearly with temperature and the convective heat-transfer coeffi-
cient and the surface emissivity are held constant. The boundary conditions con-
sisted of a constant base temperature and an adiabatic tip.

The solution to this problem using a two-parameter regular perturbation tech-
nique was presented in reference 9. The two perturbation parameters were chosen to
be the nonlinear conduction coefficient vy and the radiation-conduction parameter p.
(See table I.) The six terms of the perturbation expansion of reference 9 were used
as coordinate functions, and since one coordinate function was used in satisfying the
prescribed nonzero boundary condition, only five parameters are left as free parame-
ters. The expressions of the coordinate functions are given in the appendix.

The accuracy of the solutions obtained with the hybrid technique and the two-
parameter perturbation method is shown in figure 4 for three different values of the
nonlinear conduction coefficient and the radiation-conduction parameter (perturbation
parameters q, and dy, respectively, q; = g, = 0.5, 1.0, and 3.0). The standard
of comparison is taken to be the finite-element solution using a uniform grid of
15 three-noded finite elements with quadratic interpolation functions for the temper-
ature. As can be seen from figure 4, the solutions obtained with the perturbation
method for qq = g, = 3.0 are grossly in error. By contrast, the solutions obtained
with the hybrid technique are in close agreement with the finite-element solution
except for the small temperatures near the tip. The convergence of the solutions
obtained with the hybrid technique with the increase in the number of coordinate
functions is contrasted with the convergence of the perturbation technique in fig-
ure 5. The error norms for the six-term perturbation expansion with 4 = gy = 3.0
and 5.0 could not be shown in figure 5. As can be seen from figure 6, the addition
of the eigenmode to the coordinate functions resulted in reducing the errors near the
tip. For A= 5.0, and qq = dy = 3.0, the maximum error in the small temperature at
the tip obtained by using six-coordinate functions was 18.9 percent, This error
reduced to 10.6 percent when the eigenmode was added.

POTENTIAL OF THE PROPOSED HYBRID TECHNIQUE
The proposed hybrid analysis technique appears to have high potential for solu-
tion of nonlinear steady-state thermal problems. The numerical studies conducted

clearly demonstrated the accuracy and effectiveness of the technique, In particular,
the following two points are worth mentioning:

10



1. The proposed hybrid technique can be thought of as either of the following:

(a) A generalized perturbation method in which (1) the perturbation expansion
of the temperature contains free parameters, rather than fixed coefficients and
(2) the perturbation parameters need not be small. Since the accuracy of the solu-
tions obtained with the hybrid technique is insensitive to the choice of perturbation
parameters, they may be introduced artificially to simplify the form of the recursive
set of differential equations used in evaluating the various-order perturbation
solutions.

(b) An extended Bubnov-Galerkin approach with the coordinate functions gener-
ated by using the standard regular perturbation technique, rather than chosen
a priori.

2. The hybrid technique presented herein is the analytic counterpart of the
reduction method presented in reference 6. In the reduction method, the initial
discretization is done via finite elements, then the vector of fundamental unknowns
is expressed as a linear combination of a small number of global-temperature modes or
basis vectors and the Bubnov-Galerkin technique is used to compute the coefficients
in the linear combination., The primary objective of using the reduction method is to
reduce considerably the number of degrees of freedom in the initial discretization,
and hence, reduce the computational effort involved in the solution of the problem.
By contrast, the objectives of the foregoing hybrid technique are (a) to extend the
range of validity of the regular perturbation method by removing the restriction of a
small perturbation parameter and (b) to enhance the effectiveness of the Bubnov-
Galerkin technique by removing the arbitrariness in the selection of the coordinate
functions,

3. The hybrid technique can be applied, in conjunction with other numerical
discretization techniques, to the nonlinear thermal analysis of practical structures
with complicated geometries. To accomplish this, a partitioning scheme can be used
with the structure divided into substructures. The substructures with simple geome-
try are analyzed by using the foregoing hybrid analytical technique, and the sub-
structures with complicated geometry (e.g., near the boundaries or interfaces) are
analyzed by using numerical discretization procedures.

CONCLUDING REMARKS

A hybrid analysis technique based on the combined use of regqular perturbation
expansion and the classical Bubnov-Galerkin approximation is presented for predicting
the nonlinear steady-state temperature distributions in structures and solids. The
application of the technique to the solution of nonlinear thermal problems can be
conveniently divided into the following two stages: generation of coordinate func-
tions (or temperature modes) using the standard regular perturbation method and
approximating the temperature by a linear combination of these modes. The classical
Bubnov-Galerkin technique is then used to compute the coefficients of the linear
combination (amplitudes of the temperature modes).

Three numerical examples demonstrate the effectiveness of the hybrid technigque
for the solution of nonlinear steady-state thermal problems. The three problems are
(1) two-dimensional conduction in a square plate, (2) a one-dimensional conducting-
convecting fin with variable heat-transfer coefficients, and (3) a one-dimensional
conducting-convecting-radiating fin., In the first and third problems, the thermal
conductivity is assumed to vary linearly with temperature.

11



The results suggest several conclusions relative to the choice of the coordinate
functions and to the effectiveness of using the proposed hybrid technique in nonlin-
ear steady-state thermal problems. These conclusions are as follows:

1. The proposed hybrid technique exploits the best elements of the regular per-
turbation method and the Bubnov-Galerkin technique as follows:

(a) The regular perturbation method is used as a systematic and general
approach for generating coordinate functions.

(b) The Bubnov-Galerkin technique is used as an efficient procedure for mini-
mizing and distributing the error, in the temperature approximation,
throughout the domain,

2. The proposed hybrid technique extends the range of applicability of the per-
turbation method and enhances the effectiveness of the Bubnov-Galerkin technique. It
also alleviates the following major drawbacks of the classical techniques:

(a) The requirement of using a small parameter in the regular perturbation
expansion is avoided.,

(b) The method provides a systematic selection of the coordinate function (or
temperature modes) needed in the Bubnov-Galerkin technique.

3. For a given number of coordinate functions, the accuracy of the solutions
obtained by the hybrid technique can be improved by the addition of the first
eigenmode of the zeroth-order perturbation equation to the coordinate functions.
This is particularly true when the number of coordinate functions is small.

4, The accuracy of the solutions obtained by the hybrid technique is insensitive
to the choice of the perturbation parameter(s)., Therefore, the parameter(s) may be
introduced artificially to simplify the form of the recursive set of differential
equations used in evaluating the various-order perturbation solutions (viz, the coor-

dinate functions).

Langley Research Center
National Aeronautics and Space Administration

Hampton, VA 23665
March 21, 1983
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APPENDIX

COORDINATE FUNCTIONS USED IN NUMERICAL STUDIES
The expressions for the coordinate functions used in the three problems are
given in this appendix. These expressions were generated (and checked) by using the
computerized symbolic manipulation system MACSYMA (ref. 10). The different symbols
used in the expressions are defined in table I.

Two-Dimensional Steady Conduction in Square Plate

The two coordinate functions are given by

90 = ginh gz sin 51/51nh T
2 2 2 -1
6, = > 2[m(m”™ - 4)m sinh™nl ((1 - cosh 2w)sinh mgz/sinh b

m=1,3,ce0

- (1 - cosh 252)]sin m§1
The first eigenfunction for the zeroth-order perturbation eguation is given by

Ge = sin 51 sin gz

Steady-State Analysis of One-Dimensional Conducting-Convecting Fin
With Variable Heat-Transfer Coefficient

The coordinate functions for the two cases q = 8 and q = x2 are given by the
following equations:

Case 1: g = 8
90 = sech A cosh AE

D
1

= = . = =2 | 41,.=44
, = C, cosh AE + C,E sinh AE - c3[84 + 42(Ag)” + 1—2(>\g)

37 =16 1 -8
+ %()\g) +5—6—0()\E)]

13



APPENDIX

where
1 2 2 41 4 37 6 1 8
C1 —fseCh )\(84 + 42\ +1—2>\ t 355 A+ 3 )\)
-% A tanh A sech A 1ln sech A
t
C —l)\ ech A 1n sech A\
2" 2M°%
C,6 = 1 sech A
37 2
E=1-k
Case 2: q = )\2
GO =1
1 241 2
8, = 3(—1 + F )5(—25; + &%)
1 3 4
6, =331 + B)(8E - 4g” + £7)
_1 _ 16 8 3 4 _2 5 , 1 6
63 = 8(1 + B)[ 3 (2 + 3B)% + 3(1 + BE + 2B - 5(1 + 4B)E +T§(1 + 45)&]
Steady-State Analysis of One-Dimensional Conducting-
Convecting-Radiating Fin
The six coordinate functions in this case are given by the following equations:

14

e0,0 = sech A cosh AE
9.1 = % sech®Afcosh 2\ sech A cosh AE - cosh 2AF]
14



APPENDIX

sech4)\[—1 + sech A cosh )\2(1 - % cosh 2\ - 21—5 cosh 47\)

8N

4 = 1 =
) cosh 2Af + a5 cosh 4)@]

—16 sech37\[cosh }\g(—;- sechz}\ coshzz)\ - % sech A cosh 3\ - 15 A tanh ?\)

- cosh 2){&(%— sech A\ cosh 2)\> + % cosh 3)\—5 +l2 7\?, sinh )\:‘;]

1
2\

sechsx{—cosh 2\ sech A

+ sech A cosh xz(:% sech A cosh 2}\<3 - % cosh 2\ - -:—5 cosh 4}\>

103 13 9 .
+ 320 cosh 3\ + 576 cosh 5\ +2—4 A sinh }]

! sech A cosh 2)\5(1 - % cosh 2\ - 1 cosh 4K)

2 45
- 103 cosh 3\E + L. sech A\ cosh 2\ cosh ANE
320 £+ 45 S &

13 = 9 - . =
- 576 cosh 5AF - >a AZ sinh }\E}

7 - -
sech A ~ 1 __ sinh AE{sech Alsinh 3A¥(9000 - 4000 cosh 2\
an 43 200

-200 cosh 4\) + sinh 5AFE(1080 - 480 cosh 2A - 24 cosh 4\)]

12 960 sinh 2AE - 120 sinh 4)\% + 480 sinh 6AF + 15 sinh 8AE

- 22 680AE} - 8;40 cosh AE(216 cosh 2\E + 240 cosh 4AE + 88 cosh 6AF
- 1 L 2. 2 6.2
+ 3 cosh 8)\5) + sech )\KR sinh™ AE - 535 cosh )\E))(45 ~ 20 cosh 2\

cosh 4}\{‘ + -15 coshSATE) + C cosh AE
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APPENDIX
where
1 8 R . .
C =7 sech A{sinh A[22 680\ + 12 960 sinh 2\ + 120 sinh 4A
57 600\
— 480 sinh 6\ - 15 sinh 8A - sech A sinh 3A(9000 - 4000 cosh 2\
~ 200 cosh 4)A) - sech A sinh 5A(1080 - 480 cosh 2\ - 24 cosh 4)\)]}
+ cosh A(1080 cosh 2A + 1200 cosh 4A + 440 cosh 6\ + 15 cosh 8)\)
2
+ sech Alsinh A(~-54 000 + 24 000 cosh 2A + 1200 cosh 4}))
6 5
+ cosh A(17 280 - 7680 cosh 2\ - 384 cosh 4A)] - 21 600 cosh A}
and

Note that the expression for 62 o is different from that presented in reference 9,

14
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TABLE I.- DIFFERENTIAL OPERATORS AND BOUNDARY CONDITIONS USED IN NUMERICAL STUDIES

Square plate with temperature-
dependent thermal conductivity

™
T=Tms|nl_—

Conducting-convecting fin with
variable heat-transfer coefficient

e_lt"l 48
e 48 _q

18

[T —
2 2 2 2
- d
F6,q) or s ye|224 28y % + % e BECAL
. o8 oL 1 2 as
(¢ e,q1,q2)
Boundary 9(0,52) = 9(n,§2) =0
conditions
At E=0, B8=1
9(51 ,0) =0
At E =1, -gg =0
olg, ,m) = sin g,
Perturbation q =y Case 1: q = B
parameter a
Case 2: g = A
Conductivity ko(1 + ) k
coefficient, R
Convection hbea
coefficient, h
Py *4
pefinition of E‘a =T (a =1 or 2) = T
symbols
T-T
T a
6= T 6= T - T ' Ta =0
m b a
2
Xz hbcL
kA

2 2
O+ y (0 - 0212+ y1(%g) - 276 -0
ag

Conducting-convecting-radiating fin
with variable thermal conductivity

4 4
p(e” - 8)
At £=0, 8=1
- a6 _
At g =1, dg-o
9 ="
qy = p
Ra[1 + 71(9 - Ga)]
h
X
1
ttr
T T
T a S
g=—, 6 =—=0, 6 =—=0
Tb a Tb s Tb
RZ - th2
kA
3
- cETbcL
(3%




TABLE II.- AMPLITUDES OF COORDINATE FUNCTIONS IN HYBRID TECHNIQUE

conductivity;

qa=y

[%quare plate with temperature-dependent therma{]

q:
Amplitude -
n =2
Qg eoeses 1.0
0.6856

¢1 e s s e

*(pe ® e o000

*Amplitude of eigenfunction

0.6033

0.0156

n =2
1.0
1.2278

0.9283

0.0581
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1.0

15

Nondimensional
temperature, .50
6

.25

Nondimensional
temperature,
6

Analytic solution

PERTURBATION METHOD (ref. 9)

2-coordinate functions

2-coordinate functions
and eigenmode

HYBRID
TECHNIQUE A

Temperature distribution along AB.

(b) Temperature distribution along CD.

Figure 1.- Comparison of solutions obtained by perturbation method and hybrid
technique for square plate with temperature-dependent thermal conductivity.
g = 3.0; 6= T/Tm.
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Error m(1
norm, 3.0— T=Tm sin T~
e
2.0
1.0
— X]_
0%t e L
0 2-coordinate  2-coordinate
functions  functions and
PERTURBATION eigenmode
METHOD HYBRID TECHNIQUE

Figure 2.- Accuracy of solutions obtained by perturbation method and hybrid
technique. Square plate with temperature-dependent thermal conductivity

(problem 1).




1.04

Nondimensional

temperature, P
8 Al
A A
A A
6 A
A,
4 1 | | |
0 .2 4 6 .8
XI/L
(a) A =1.0.
Finite-element solution
- 2
A q=X,, 4terms
104 A q=, 2terms
+ q =P, 2-coordinate
and functions
sk q= )\2, 4-coordinate
functions
Nondimensional
temperature, .6 -
6
A
2 | | | 1
0 2 .4 6 8
xl/L
(b) A= 2.0.

A
Aaa,
Adaiaa

B=1.0

FAAp b p=0.33

A,
A
AAAAraa p=03

=1.0

1.0

PERTURBATION
METHOD

HYBRID
TECHNIQUE

Figure 3.- Comparison of solutions obtained by perturbation method and hybrid
technique for one-dimensional conducting-convecting fin with variable heat-

transfer coefficient.
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1 X4

do
— —x lja—'— 0

1

Finite-element solution
A 6 terms - PERTURBATION METHOD

+ 6-coordinate functions - HYBRID TECHNIQUE

Nondimensional "k AAAAAAAAAAA
temperature, .6 — A AV A A
6 ‘ .:;; 2 ﬁ ql = q2 =30
A ARG ‘
A% o Ve
A A 4 A A

A AAAA R | q]. q2 =1.0
4\ ql—q2:05

2 1 L | 1 |

0 2 4 6 8 1.0

XI/L

Figure 4.- Comparison of solutions obtained by perturbation method and hybrid technique for
one-dimensional conducting-convecting-radiating fin with variable thermal conductivity.
A= 2.0; a4 is nonlinear conductivity coefficient; a5 is radiation-conduction fin
parameter,




144

-3
2.0~ 10
%
é
1.5 é
1
.
é
Error %
norm L0 %
e %
/ — X
) 6= e 19
DS % N le L | dX]_
% | |
|
i 2 B .
0 3terms  6terms 3-coordinate  6-coordinate
functions functions
PERTURBATION METHOD HYBRID TECHNIQUE

Figure 5.- Accuracy and convergence of solutions obtained by perturbation method and hybrid technique.
One-dimensional conducting-convecting-radiating fin with variable thermal conductivity; q, is
nonlinear conductivity coefficient; g, 1is radiation-conduction fin parameter.



T4

1.0€R —— Finite-element solution

A 6 terms — PERTURBATION METHOD

O 6-coordinate functions

.- ) . . HYBRID
+ 6-coordinate functions TECHNIQUE

and eigenmode

.6 —
Nondimensional A
temperature, 48 _p
8 A I » & T X T ) —— e et EX— -
4 A A i ‘l l
2+
| L | | -
0 2 4 .6 8 1.0

Figure 6.- Effect of adding eigenmode to coordinate functions on accuracy of solutions obtained by
hybrid technique. Conducting-convecting-radiating fin with variable thermal conductivity;
A= 5.0; gy =dg = 3.0.



1.

S
4. Title and Subtitle

Report No. 2. Government Accession No. 3. Recipient’s Cat;logNo
NASA TP-2145

5. Report Date

HYBRID PERTURBATION/BUBNOV-GALERKIN TECHNIQUE FOR June 1983
NONLINEAR THERMAL ANALYSIS 6. Performing Organization Code ]

506-53-53-07

7. Author(s)

8. Performing Organi;ation Report ch>:
Ahmed K. Noor and Chad D. Balch I~15584

10. Work Unit No.

9. Performing Organization Name and Address

NASA Langley Research Center 11. Contract or Grant No.
Hampton, VA 23665

—_ e

_}13. Type oerréportr and Pe_riZ)J &)vered

12. Sponsoring Agency Name and Address Technical Paper

National Aeronautics and Space Administration T S Aoy Goaa” T
. ONSOr N n
Washington, DC 20546 P g Agency e

15. Supplementary Notes

Ahmed K. Noor and Chad D. Balch: The George Washington University Joint Institute
for Advancement of Flight Sciences, Hampton, Virginia.,.

16. Abstract

A two-step hybrid analysis technique is presented for predicting the nonlinear
steady-state temperature distribution in structures and solids. The technique is
based on the successive application of the regular perturbation expansion and the
classical Bubnov-Galerkin approximation. The functions associated with the various-
order terms in the perturbation expansion of the temperature are first obtained by
using the regular perturbation method. These functions are selected as coordinate
functions (or temperature modes) and the classical Bubnov-Galerkin technique is then
used to compute their amplitudes. The potential of the proposed hybrid technique for
the solution of nonlinear thermal problems is discussed. The effectiveness of this
technique is demonstrated by means of three numerical examples, which include the
effects of conduction, convection, and radiation modes of heat transfer. Results of
the study indicate that the hybrid technique overcomes the two major drawbacks of the
classical techniques: (1) the requirement of using a small parameter in the regular
perturbation method and (2) the arbitrariness in the choice of the coordinate func-
tions in the Bubnov-Galerkin technigque., Therefore, the proposed technique extends
the range of applicability of the regular perturbation method and enhances the effec-
tiveness of the Bubnov-Galerkin technique.

17. Key Words (Suggested by Authoris)) ' 18. Distribution Statement
Thermal analysis Convection Unclassified - Unlimited
Bubnov-Galerkin technique Radiation
Perturbation technigue Heat transfer
Hybrid technique Analytical
Nonlinear conduction me thods Subject Category 34

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages | 22, Price
Unclassified Unclassified 26 B02 J

For sale by the National Technical Information Service, Springfield, Virgima 22161 NASA-Langley, 1983




Nationa! Aeronautics and THIRD-CLASS BULK RATE Postage and Fees Paid
Nationa! Aeronautics and

Space Administration Space Administration
NASA-451

Washington, D.C.

20546

Official Business
Penalty for Private Use, $300

3 I 14,D, 830602 S0O0Y03DS
DEPI OF THE Alr FORCE

AF A=APONS LABIORATORY

ATIN s TECANICAL LIBgARY (SULD
KInTLAND AFB Nd 37117

i P . If Undeliverable (Section 158
Nm OSTMASTER Postal Manual) Do Not Return




